Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Sci Rep ; 11(1): 10488, 2021 05 18.
Article En | MEDLINE | ID: mdl-34006978

The increased healthspan afforded by coffee intake provides novel opportunities to identify new therapeutic strategies. Caffeine has been proposed to afford benefits through adenosine A2A receptors, which can control synaptic dysfunction underlying some brain disease. However, decaffeinated coffee and other main components of coffee such as chlorogenic acids, also attenuate brain dysfunction, although it is unknown if they control synaptic function. We now used electrophysiological recordings in mouse hippocampal slices to test if realistic concentrations of chlorogenic acids directly affect synaptic transmission and plasticity. 3-(3,4-dihydroxycinnamoyl)quinic acid (CA, 1-10 µM) and 5-O-(trans-3,4-dihydroxycinnamoyl)-D-quinic acid (NCA, 1-10 µM) were devoid of effect on synaptic transmission, paired-pulse facilitation or long-term potentiation (LTP) and long-term depression (LTD) in Schaffer collaterals-CA1 pyramidal synapses. However, CA and NCA increased the recovery of synaptic transmission upon re-oxygenation following 7 min of oxygen/glucose deprivation, an in vitro ischemia model. Also, CA and NCA attenuated the shift of LTD into LTP observed in hippocampal slices from animals with hippocampal-dependent memory deterioration after exposure to ß-amyloid 1-42 (2 nmol, icv), in the context of Alzheimer's disease. These findings show that chlorogenic acids do not directly affect synaptic transmission and plasticity but can indirectly affect other cellular targets to correct synaptic dysfunction. Unraveling the molecular mechanisms of action of chlorogenic acids will allow the design of hitherto unrecognized novel neuroprotective strategies.


Chlorogenic Acid/pharmacology , Hippocampus/drug effects , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , Neurotransmitter Agents/pharmacology , Synaptic Transmission/drug effects , Alzheimer Disease/pathology , Animals , Disease Models, Animal , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL
2.
Bioorg Chem ; 98: 103727, 2020 05.
Article En | MEDLINE | ID: mdl-32179285

Organic selenium compounds are widely associated with numerous pharmacological properties. However, selenium compounds, such as Ebselen (Ebs) and Diphenyl Diselenide (DPDS), could interact with mitochondrial respiratory complexes, especially with thiol groups. The present study evaluated whether the insertion of functional groups, o-methoxy, and p-methyl on organic selenium compounds promotes changes in mitochondrial functioning parameters and whether this is related to antibacterial activity. Here we tested some in vitro parameters after the exposure of mitochondria to different concentrations of ß-selenoamines 1-phenyl-3-(p-tolylselanyl)propan-2-amine (C1) and 1-(2-methoxyphenylselanyl)-3-phenylpropan-2-amine (C2) and analogs of DPDS 1,2-bis(2-methoxyphenyl)diselenide (C3) and 1,2-bisp-tolyldiselenide (C4). We also evaluated the antibacterial activity of ß-selenoamines and diselenides against Methicillin-resistant Staphylococcus aureus and Escherichia coli. Our results showed that o-methoxy insertion increased the antioxidant properties, without affecting the mitochondrial membrane potential. The compounds with a p-methyl insertion affected the mitochondrial membrane potential and significantly decreased the State III respiration and RCR. Besides, the p-methyl compounds presented antibacterial activity at lower concentrations than those shown in o-methoxy, precisely by the same mechanism that promotes damage to thiol groups and better absorption in gram-positive bacteria due to their relationship with cell wall constituents. Finally, our study confirms that structural modifications in organic selenium compounds provide changes in mitochondrial functioning but also raise their antibacterial effect. This strategy can be used as a target for the development of new enough potent antibacterial to restrict the advance of resistant bacterial infections.


Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Mitochondria, Liver/drug effects , Organoselenium Compounds/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Male , Membrane Potential, Mitochondrial/drug effects , Microbial Sensitivity Tests , Molecular Structure , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry , Rats , Rats, Wistar , Structure-Activity Relationship
3.
Neurosci Lett ; 704: 141-144, 2019 06 21.
Article En | MEDLINE | ID: mdl-30974229

Traumatic brain injury (TBI) represents one of the leading causes of death worldwide. Its pathophysiology involves several neurochemical events including mitochondrial dysfunction. Since mitochondrial respiration plays a key role in cell survival, pharmacological interventions targeting mitochondrial function have been highlighted as a powerful tool against the neurodegenerative process triggered by TBI. Guanosine (GUO), a neuroprotective molecule in different neurological disorders involving neurotoxicity, has shown protective properties after TBI, however its mechanism of action is not well understood in the central nervous system (CNS). Therefore, the aim of this study is to evaluate the possible target receptor involved in the protective GUO effects on TBI-induced mitochondrial dysfunction in the cerebral cortex of rats. Results show that a single dose of GUO (7.5 mg/kg) injected 40 min after a fluid percussion injury (FPI) protects against loss of mitochondrial membrane potential and increase of reactive oxygen species 8 h post-TBI. These effects were specifically blocked by a pretreatment (10 min after TBI) with an A1 adenosine receptor antagonist (DPCPX 1 mg/kg). In contrast, pretreatment with an A2A adenosine receptor antagonist (SCH 58261 0.05 mg/kg) did not alter GUO effects. These findings suggest that acute GUO neuroprotection following TBI involves the modulation of the adenosinergic system, especially A1 adenosine receptor.


Brain Injuries, Traumatic/drug therapy , Guanosine/pharmacology , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Receptor, Adenosine A1/metabolism , Receptors, Adenosine A2/metabolism , Animals , Brain Injuries, Traumatic/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Guanosine/therapeutic use , Male , Membrane Potential, Mitochondrial , Mitochondria/physiology , Neuroprotective Agents/therapeutic use , Rats, Wistar , Reactive Oxygen Species/metabolism
4.
Biomed Pharmacother ; 111: 1438-1446, 2019 Mar.
Article En | MEDLINE | ID: mdl-30841459

Mitochondria play an important role in cell life and in the regulation of cell death. In addition, mitochondrial dysfunction contributes to a wide range of neuropathologies. The nucleoside Guanosine (GUO) is an endogenous molecule, presenting antioxidant properties, possibly due to its direct scavenging ability and/or from its capacity to activate the antioxidant defense system. GUO demonstrate a neuroprotective effect due to the modulation of the glutamatergic system and maintenance of the redox system. Thus, considering the few studies focused on the direct effects of GUO on mitochondrial bioenergetics, we designed a study to evaluate the in vitro effects of GUO on rat mitochondrial function, as well as against Ca2+-induced impairment. Our results indicate that GUO prevented mitochondrial dysfunction induced by Ca2+ misbalance, once GUO was able to reduce mitochondrial swelling in the presence of Ca2+, as well as ROS production and hydrogen peroxide levels, and to increase manganese superoxide dismutase activity, oxidative phosphorylation and tricarboxylic acid cycle activities. Our study indicates for the first time that GUO could direct prevent the mitochondrial damage induced by Ca2+ and that these effects were not related to its scavenging properties. Our data indicates that GUO could be included as a new pharmacological strategy for diseases linked to mitochondrial dysfunction.


Calcium/metabolism , Guanosine/pharmacology , Mitochondria/drug effects , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Neuroprotective Agents/pharmacology , Animals , Antioxidants/pharmacology , Citric Acid Cycle/drug effects , Hydrogen Peroxide/metabolism , Male , Mitochondria/metabolism , Oxidation-Reduction/drug effects , Oxidative Phosphorylation/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
5.
Mol Neurobiol ; 56(5): 3145-3158, 2019 May.
Article En | MEDLINE | ID: mdl-30105669

Traumatic brain injury (TBI) is a leading cause of disability worldwide, triggering chronic neurodegeneration underlying cognitive and mood disorder still without therapeutic prospects. Based on our previous observations that guanosine (GUO) attenuates short-term neurochemical alterations caused by TBI, this study investigated the effects of chronical GUO treatment in behavioral, molecular, and morphological disturbances 21 days after trauma. Rats subject to TBI displayed mood (anxiety-like) and memory dysfunction. This was accompanied by a decreased expression of both synaptic (synaptophysin) and plasticity proteins (BDNF and CREB), a loss of cresyl violet-stained neurons, and increased astrogliosis and microgliosis in the hippocampus. Notably, chronic GUO treatment (7.5 mg/kg i.p. daily starting 1 h after TBI) prevented all these TBI-induced long-term behavioral, neurochemical, and morphological modifications. This neuroprotective effect of GUO was abrogated in the presence of the adenosine A1 receptor antagonist DPCPX (1 mg/kg) but unaltered by the adenosine A2A receptor antagonist SCH58261 (0.05 mg/kg). These findings show that a chronic GUO treatment prevents the long-term mood and memory dysfunction triggered by TBI, which involves adenosinergic receptors.


Behavior, Animal/drug effects , Brain Injuries, Traumatic/drug therapy , Guanosine/therapeutic use , Receptors, Purinergic P1/metabolism , Animals , Anxiety/drug therapy , Anxiety/etiology , Biomarkers/metabolism , Brain Injuries, Traumatic/complications , Gliosis/complications , Gliosis/pathology , Guanosine/pharmacology , Hippocampus/drug effects , Hippocampus/pathology , Male , Memory Disorders/complications , Microglia/drug effects , Microglia/pathology , Models, Biological , Motor Activity/drug effects , Neuronal Plasticity/genetics , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Rats, Wistar
6.
Biomed Pharmacother ; 98: 454-459, 2018 Feb.
Article En | MEDLINE | ID: mdl-29287192

The high levels of oxidative stress and inflammation can be present in the etiology of degenerative intestinal pathologies associated with ethanol ingestion. The Rosmarinus officinalis L. has exhibited several physiological and medicinal activities. In this investigation, we intended to clarify, for the first time, the antioxidant and anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. (eeRo) against an acute damage induced by ethanol, specifically in the small intestine of rats. The rats were treated three times, at every 24 h, with eeRo at 500-1000 mg/kg or vehicle, oral gavage. All groups got a single dose of ethanol (2 ml/kg), oral gavage, after 36 h of fasting and 1 h after the last dose of eeRo or vehicle administration. We performed the mensuration of oxidative stress profile in lipid peroxidation in serum and intestine; Na+/K+ ATPase, catalase, and superoxide dismutase activities assays only in intestine; and anti-inflammatory evidences of eeRo in myeloperoxidase activity assay only in the intestine. The eeRo was able to protect the animals against the lipid peroxidation in serum and intestine. It prevented the reduction in Na+/K+ ATPase and catalase levels induced by ethanol in the intestine. In addition, eeRo increased the superoxide dismutase activity when compared to control and protected the intestine against elevations in myeloperoxidase activity caused by ethanol. Our results suggested that eeRo exerted a significant intestinal protective effect by antioxidant and anti-inflammatory mechanisms. Thus, the eeRo represented a promising agent against intestinal lesions induced by ethanol.


Ethanol/adverse effects , Intestinal Diseases/chemically induced , Intestinal Diseases/drug therapy , Intestines/drug effects , Plant Extracts/pharmacology , Rosmarinus/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Intestinal Diseases/metabolism , Intestinal Mucosa/metabolism , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Phytotherapy/methods , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism , Superoxide Dismutase/metabolism
7.
J Neurotrauma ; 34(7): 1318-1328, 2017 04 01.
Article En | MEDLINE | ID: mdl-27931151

Traumatic brain injury (TBI) is a highly complex multi-factorial disorder. Experimental trauma involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death. Mitochondrial dysfunction and glutamatergic excitotoxicity are the hallmark mechanisms of damage. Accordingly, a successful pharmacological intervention requires a multi-faceted approach. Guanosine (GUO) is known for its neuromodulator effects in various models of brain pathology, specifically those that involve the glutamatergic system. The aim of the study was to investigate the GUO effects against mitochondrial damage in hippocampus and cortex of rats subjected to TBI, as well as the relationship of this effect with the glutamatergic system. Adult male Wistar rats were subjected to a unilateral moderate fluid percussion brain injury (FPI) and treated 15 min later with GUO (7.5 mg/kg) or vehicle (saline 0.9%). Analyses were performed in hippocampus and cortex 3 h post-trauma and revealed significant mitochondrial dysfunction, characterized by a disrupted membrane potential, unbalanced redox system, decreased mitochondrial viability, and complex I inhibition. Further, disruption of Ca2+ homeostasis and increased mitochondrial swelling was also noted. Our results showed that mitochondrial dysfunction contributed to decreased glutamate uptake and levels of glial glutamate transporters (glutamate transporter 1 and glutamate aspartate transporter), which leads to excitotoxicity. GUO treatment ameliorated mitochondrial damage and glutamatergic dyshomeostasis. Thus, GUO might provide a new efficacious strategy for the treatment acute physiological alterations secondary to TBI.


Amino Acid Transport System X-AG/metabolism , Brain Injuries, Traumatic , Glutamic Acid/metabolism , Guanosine/pharmacology , Mitochondrial Diseases , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Guanosine/administration & dosage , Male , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/etiology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/physiopathology , Oxidation-Reduction/drug effects , Rats , Rats, Wistar
8.
Mol Neurobiol ; 54(10): 7585-7596, 2017 12.
Article En | MEDLINE | ID: mdl-27830534

Traumatic brain injury (TBI) is one of the most common types of brain injuries that cause death or persistent neurological disturbances in survivors. Most of the promising experimental drugs were not effective in clinical trials; therefore, the development of TBI drugs represents a huge unmet need. Guanosine, an endogenous neuroprotective nucleoside, has not been evaluated in TBI to the best of our knowledge. Therefore, the present study evaluated the effect of guanosine on TBI-induced neurological damage. Our findings showed that a single dose of guanosine (7.5 mg/kg, intraperitoneally (i.p.) injected 40 min after fluid percussion injury (FPI) in rats protected against locomotor and exploratory impairments 8 h after injury. The treatment also protected against neurochemical damage to the ipsilateral cortex, glutamate uptake, Na+/K+-ATPase, glutamine synthetase activity, and alterations in mitochondrial function. The inflammatory response and brain edema were also reduced by this nucleoside. In addition, guanosine protected against neuronal death and caspase 3 activation. Therefore, this study suggests that guanosine plays a neuroprotective role in TBI and can be exploited as a new pharmacological strategy.


Brain Injuries, Traumatic/prevention & control , Guanosine/therapeutic use , Inflammation Mediators/antagonists & inhibitors , Mitochondria/drug effects , Neurons/drug effects , Neuroprotective Agents/therapeutic use , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Cell Count/methods , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Guanosine/pharmacology , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , Inflammation Mediators/metabolism , Male , Mitochondria/metabolism , Mitochondria/pathology , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Rats , Rats, Wistar
9.
Amino Acids ; 48(6): 1373-89, 2016 06.
Article En | MEDLINE | ID: mdl-26940724

Hyperammonemia is a common finding in children with methylmalonic acidemia. However, its contribution to methylmalonate-induced excitotoxicty is poorly understood. The aim of this study was to evaluate the mechanisms by which ammonia influences in the neurotoxicity induced by methylmalonate (MMA) in mice. The effects of ammonium chloride (NH4Cl 3, 6, and 12 mmol/kg; s.c.) on electroencephalographic (EEG) and behavioral convulsions induced by MMA (0.3, 0.66, and 1 µmol/2 µL, i.c.v.) were observed in mice. After, ammonia, TNF-α, IL1ß, IL-6, nitrite/nitrate (NOx) levels, mitochondrial potential (ΔΨ), reactive oxygen species (ROS) generation, Methyl-Tetrazolium (MTT) reduction, succinate dehydrogenase (SDH), and Na(+), K(+)-ATPase activity levels were measured in the cerebral cortex. The binding of [(3)H]flunitrazepam, release of glutamate-GABA; glutamate decarboxylase (GAD) and glutamine synthetase (GS) activity and neuronal damage [opening of blood brain barrier (BBB) permeability and cellular death volume] were also measured. EEG recordings showed that an intermediate dose of NH4Cl (6 mmol/kg) increased the duration of convulsive episodes induced by MMA (0.66 µmol/2 µL i.c.v). NH4Cl (6 mmol/kg) administration also induced neuronal ammonia and NOx increase, as well as mitochondrial ROS generation throughout oxidation of 2,7-dichlorofluorescein diacetate (DCFH-DA) to DCF-RS, followed by GS and GAD inhibition. The NH4Cl plus MMA administration did not alter cytokine levels, plasma fluorescein extravasation, or neuronal damage. However, it potentiated DCF-RS levels, decreased the ΔΨ potential, reduced MTT, inhibited SDH activity, and increased Na(+), K(+)-ATPase activity. NH4Cl also altered the GABA cycle characterized by GS and GAD activity inhibition, [(3)H]flunitrazepam binding, and GABA release after MMA injection. On the basis of our findings, the changes in ROS and reactive nitrogen species (RNS) levels elicited by ammonia alter the glycine/glutamate (GABA) cycle and contribute to MMA-induced excitability.


Ammonia/pharmacology , Cerebral Cortex , Glutamic Acid/pharmacology , Glycine/pharmacology , Membrane Potential, Mitochondrial/drug effects , Methylmalonic Acid/toxicity , Ammonia/metabolism , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Cytokines/metabolism , Electroencephalography , Glutamic Acid/metabolism , Glycine/metabolism , Homeostasis/drug effects , Hyperammonemia/chemically induced , Hyperammonemia/metabolism , Hyperammonemia/physiopathology , Mice , Oxidation-Reduction/drug effects , Seizures/chemically induced , Seizures/metabolism , Seizures/physiopathology
10.
J Cell Biochem ; 117(7): 1638-48, 2016 07.
Article En | MEDLINE | ID: mdl-26639776

Diphenyl diselenide, (PhSe)2 , is an organoselenium compound with pharmacological actions mostly related to antioxidant and anti-inflammatory properties. The study investigated its antiviral and virucidal actions against herpes simplex virus 2 (HSV-2) infection in vitro and in a vaginal infection model in mice. The plaque reduction assay indicated that (PhSe)2 showed virucidal and antiviral actions reducing infectivity in 70.8% and 47%, respectively. The antiviral action of (PhSe)2 against HSV-2 vaginal infection was performed by infecting mice (10(5) PFU/ml(-1) ) at day 6. The treatment with (PhSe)2 (5 mg/kg/day, intragastric [i.g.]) followed 5 days before and for more 5 days after infection. The extravaginal lesion score was evaluated from days 6 to 10. At day 11, animals were killed, and histological evaluation, determination of viral load, and TNF-α and IFN-γ levels were performed in supernatants of homogenized vaginal tissue. The levels of reactive species (RS), protein carbonyl, non-protein thiols (NPSH), nitrate/nitrite (NOx), and malondialdehyde (MDA), and the activities of myeloperoxidase (MPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were determined. (PhSe)2 reduced the histological damage, extravaginal lesion scores, the viral load of vaginal tissue, and the activity of MPO, but increased the levels of TNF-α, IFN-γ. (PhSe)2 attenuated the increase of RS, MDA, NOx levels and the activity of GR caused by infection. (PhSe)2 also attenuated the reduction of NPSH content and the inhibition of CAT, SOD, and GPx activities. The antiviral action of (PhSe)2 against HSV-2 infection was related to its immunomodulatory, antioxidant, and anti-inflammatory properties. J. Cell. Biochem. 117: 1638-1648, 2016. © 2015 Wiley Periodicals, Inc.


Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Benzene Derivatives/pharmacology , Herpes Genitalis/drug therapy , Herpesvirus 2, Human , Immunologic Factors/pharmacology , Organoselenium Compounds/pharmacology , Animals , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Herpes Genitalis/blood , Mice
11.
Amino Acids ; 48(1): 137-48, 2016 Jan.
Article En | MEDLINE | ID: mdl-26293481

The metabolic syndrome is a group of metabolic alterations considered a worldwide public health problem. Organic selenium compounds have been reported to have many different pharmacological actions, such as anti-hypercholesterolemic and anti-hyperglycemic. The aim of this study was to evaluate the effect of p-chloro-diphenyl diselenide (p-ClPhSe)2, an organic selenium compound, in a model of obesity induced by monosodium glutamate (MSG) administration in rats. The rats were treated during the first ten postnatal days with MSG and received (p-ClPhSe)2 (10 mg/kg, intragastrically) from 45th to 51 th postnatal day. Glucose, lipid and lactate levels were determined in plasma of rats. Glycogen levels and activities of tyrosine aminotransferase, hexokinase, citrate synthase and glucose-6-phosphatase (G-6-Pase) were determined in livers of rats. Renal G-6-Pase activity was also determined. The purine content [Adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate] and mitochondrial functionality in the liver were also investigated. p-(ClPhSe)2 did not alter the reduction in growth performance and in the body weight caused by MSG but reduced epididymal fat deposition of rats. p-(ClPhSe)2 restored glycemia, triglycerides, cholesterol and lactate levels as well as the glucose metabolism altered in rats treated with MSG. p-(ClPhSe)2 restored hepatic mitochondrial dysfunction and the decrease in citrate synthase activity and ATP and ADP levels caused by MSG in rats. In summary, (p-ClPhSe)2 had homeostatic effects on glucose metabolism and mitochondrial function alterations induced by MSG administration to rats.


Glucose/metabolism , Homeostasis/drug effects , Mitochondria/metabolism , Obesity/drug therapy , Organoselenium Compounds/administration & dosage , Sodium Glutamate/adverse effects , Animals , Cholesterol/metabolism , Female , Humans , Liver/drug effects , Liver/metabolism , Male , Mitochondria/drug effects , Obesity/etiology , Obesity/metabolism , Rats , Rats, Wistar , Sodium Glutamate/metabolism , Triglycerides/metabolism
12.
J Neurotrauma ; 33(14): 1317-30, 2016 07 15.
Article En | MEDLINE | ID: mdl-26651029

Throughout the world, traumatic brain injury (TBI) is one of the major causes of disability, which can include deficits in motor function and memory, as well as acquired epilepsy. Although some studies have shown the beneficial effects of physical exercise after TBI, the prophylactic effects are poorly understood. In the current study, we demonstrated that TBI induced by fluid percussion injury (FPI) in adult male Wistar rats caused early motor impairment (24 h), learning deficit (15 days), spontaneous epileptiform events (SEE), and hilar cell loss in the hippocampus (35 days) after TBI. The hippocampal alterations in the redox status, which were characterized by dichlorofluorescein diacetate oxidation and superoxide dismutase (SOD) activity inhibition, led to the impairment of protein function (Na(+), K(+)-adenosine triphosphatase [ATPase] activity inhibition) and glutamate uptake inhibition 24 h after neuronal injury. The molecular adaptations elicited by previous swim training protected against the glutamate uptake inhibition, oxidative stress, and inhibition of selected targets for free radicals (e.g., Na(+), K(+)-ATPase) 24 h after neuronal injury. Our data indicate that this protocol of exercise protected against FPI-induced motor impairment, learning deficits, and SEE. In addition, the enhancement of the hippocampal phosphorylated nuclear factor erythroid 2-related factor (P-Nrf2)/Nrf2, heat shock protein 70, and brain-derived neurotrophic factor immune content in the trained injured rats suggests that protein expression modulation associated with an antioxidant defense elicited by previous physical exercise can prevent toxicity induced by TBI, which is characterized by cell loss in the dentate gyrus hilus at 35 days after TBI. Therefore, this report suggests that previous physical exercise can decrease lesion progression in this model of brain damage.


Behavior, Animal/physiology , Brain Injuries, Traumatic/metabolism , Cognitive Dysfunction/metabolism , Dentate Gyrus/metabolism , Epilepsy/metabolism , Movement Disorders/metabolism , Oxidation-Reduction , Physical Conditioning, Animal/physiology , Signal Transduction/physiology , Animals , Brain Injuries, Traumatic/complications , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Dentate Gyrus/pathology , Disease Models, Animal , Epilepsy/etiology , Epilepsy/prevention & control , Learning/physiology , Male , Movement Disorders/etiology , Movement Disorders/prevention & control , Rats , Rats, Wistar
13.
Int J Nanomedicine ; 10: 5663-70, 2015.
Article En | MEDLINE | ID: mdl-26379436

Selenium compounds, such as diphenyl diselenide (DPDS), have been shown to exhibit biological activity, including antioxidant effects. However, the use of DPDS in pharmacology is limited due to in vivo pro-oxidative effects. In addition, studies have shown that DPDS-loaded nanocapsules (DPDS-NCS) have greater bioavailability than free DPDS in mice. Accordingly, the aim of this study was to investigate the antioxidant properties of DPDS-NCS in vitro and biological activity in mice. Our in vitro results suggested that DPDS-NCS significantly reduced the production of reactive oxygen species and Fe(II)-induced lipid peroxidation (LPO) in brain. The administration of DPDS-NCS did not result in death or change the levels of endogenous reduced or oxidized glutathione after 72 hours of exposure. Moreover, ex vivo assays demonstrated that DPDS-NCS significantly decreased the LPO and reactive oxygen species levels in the brain. In addition, the highest dose of DPDS-NCS significantly reduced Fe(II)- and sodium nitroprusside-induced LPO in the brain and Fe(II)-induced LPO in the liver. Also, δ-aminolevulinate acid dehydratase within the brain was inhibited only in the highest dose of DPDS-NCS. In conclusion, our data demonstrated that DPDS-NCS exhibited low toxicity in mice and have significant antioxidant characteristics, indicating that nanoencapsulation is a safer method of DPDS administration.


Benzene Derivatives/pharmacology , Free Radical Scavengers/pharmacology , Nanocapsules/chemistry , Organoselenium Compounds/pharmacology , Animals , Benzene Derivatives/chemistry , Brain/drug effects , Brain/metabolism , Chemical Phenomena , Dose-Response Relationship, Drug , Free Radical Scavengers/chemistry , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Nitroprusside/chemistry , Nitroprusside/pharmacology , Organoselenium Compounds/chemistry , Porphobilinogen Synthase/antagonists & inhibitors , Porphobilinogen Synthase/metabolism , Reactive Oxygen Species/metabolism , Selenium Compounds/chemistry , Selenium Compounds/pharmacology , Thiobarbituric Acid Reactive Substances/metabolism
14.
Neurotoxicol Teratol ; 51: 61-7, 2015.
Article En | MEDLINE | ID: mdl-26342287

Fumonisin B1 (FB1) is a Fusarium spp. mycotoxin which constitutes a major public health issue because of its worldwide distribution and diversity of toxic effects.While the liver and kidney are considered the major target organs of FB1 toxicity in several species, evidence indicates that FB1 may be toxic to the brain. To further investigate the effects of FB1 on the central nervous system the present study aimed to test the hypothesis that acute FB1 exposure causes brain hyperexcitability and the potential underlying mechanisms. For these purposes, adult male C57BL/6 mice were injected with FB1 (8 mg/kg, i.p.) or its vehicle and 30 min thereafter received with a low dose of the classical convulsant pentylenetetrazol (PTZ, 30 mg/kg, i.p.) or its vehicle. After behavioral evaluation the cerebral cortex and the hippocampus were collected for analysis of Na(+),K(+)-ATPase activity, mitochondrial membrane potential (ΔΨm) and mitochondrial complex I and II activities. We found that FB1 reduced the latency for PTZ-induced myoclonic jerks and increased the number of these events. After exposure to FB1 total and α1 Na(+),K(+)-ATPase activities increased in cerebral cortex, whereas the same enzyme activities decreased in the hippocampus. Although no changes in mitochondrial complex I and II activities were found, acute exposure to FB1 increased ΔΨm in the cerebral cortex. Altogether, present results indicate that FB1 causes brain hyperexcitability in vivo, and that mitochondrial dysfunction may represent a potential underlying mechanism.


Convulsants/toxicity , Enzyme Inhibitors/toxicity , Fumonisins/toxicity , Pentylenetetrazole/toxicity , Seizures/chemically induced , Analysis of Variance , Animals , Disease Models, Animal , Drug Synergism , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , NADH Dehydrogenase/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
15.
Chem Biol Interact ; 223: 95-101, 2014 Nov 05.
Article En | MEDLINE | ID: mdl-25260559

The cognitive function decline is closely related with brain changes generated by age. The ability of caffeine and exercise to prevent memory impairment has been reported in animal models and humans. The purpose of the present study was to investigate whether swimming exercise and caffeine administration enhance memory in middle-aged Wistar rats. Male Wistar rats (18months) received caffeine at a dose of 30mg/kg, 5days per week by a period of 4weeks. Animals were subjected to swimming training with a workload (3% of body weight, 20min per day for 4weeks). After 4weeks, the object recognition test (ORT) and the object location test (OLT) were performed. The results of this study demonstrated that caffeine suppressed exercise-enhanced long-term (ORT) and spatial (OLT) memory in middle-aged and this effect may be related to a decrease in hippocampal p-CREB signaling. This study also provided evidence that the effects of this protocol on memory were not accompanied by alterations in the levels of activated Akt. The [(3)H] glutamate uptake was reduced in hippocampus of rats administered with caffeine and submitted to swimming protocol.


Caffeine/adverse effects , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Spatial Memory/drug effects , Spatial Memory/physiology , Aging/metabolism , Aging/psychology , Animals , Caffeine/administration & dosage , Cyclic AMP Response Element-Binding Protein/metabolism , Glutamic Acid/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Memory Disorders/etiology , Memory Disorders/metabolism , Memory Disorders/psychology , Physical Exertion , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects , Swimming
16.
Neurotox Res ; 26(4): 317-30, 2014 Nov.
Article En | MEDLINE | ID: mdl-24615369

Acute stroke is a major risk for morbidity and mortality in aging population. Mitochondrion has been the focus of a wide stroke-related research. This study investigated if treatment or pre-treatment with diphenyl diselenide (PhSe)2 can prevent mitochondrial damage in cerebral structures of rats induced by an ischemia and reperfusion (I/R) model. Adult male Wistar rats were assigned into five experimental groups: sham operation, ischemia/reperfusion, pre-treated + I/R, treated + I/R, and Sham + (PhSe)2. Neurological score showed the damage caused by I/R, which was partially prevented by (PhSe)2. Moreover, mitochondria of hippocampus and cortex were impaired by I/R through an increase of reactive oxygen species production, mitochondrial membrane potential (ΔΨm) and electrons flow alteration, activity of complex I deregulation as well as mitochondrial swelling. However, the ischemic damage did not induce an increase in pro-apoptotic proteins expression, but demonstrated an enhanced expression of Hsp70. The mitochondrial redox state was also altered (GSH/GSSG ratio, MnSOD, and GPx activities). Our results revealed that all treatments with (PhSe)2 significantly reduced the mitochondrial damage induced by I/R. These findings suggest that neuroprotective properties of (PhSe)2 may be attributed to the maintenance of mitochondrial redox balance.


Benzene Derivatives/pharmacology , Cerebral Cortex/drug effects , Hippocampus/drug effects , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Organoselenium Compounds/pharmacology , Stroke/drug therapy , Animals , Brain Ischemia , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Disease Models, Animal , Glutathione/metabolism , HSP70 Heat-Shock Proteins/metabolism , Hippocampus/pathology , Hippocampus/physiopathology , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria/pathology , Mitochondria/physiology , Oxidoreductases/metabolism , Random Allocation , Rats, Wistar , Reactive Oxygen Species/metabolism , Reperfusion Injury , Severity of Illness Index , Stroke/pathology , Stroke/physiopathology , Superoxide Dismutase/metabolism
17.
Amino Acids ; 46(5): 1187-95, 2014 May.
Article En | MEDLINE | ID: mdl-24481487

The levels of circulatory inflammatory markers, including interleukin (IL) IL-1ß, IL-6, tumor necrosis factor-α (TNF-α) and interferon (INF-γ), are known to increase associated to aging. Caffeine has been reported to produce many beneficial effects for health. Exercise is considered to be a safe medicine to attenuate inflammation and cellular senescence. The purpose of the present study was to investigate the effects of a moderate-intensity swimming exercise (3 % of body weight, 20 min per day, 4 weeks) and sub-chronic supplementation with caffeine (30 mg/kg, 4 weeks) on the serum cytokine levels in middle-aged (18 months) Wistar rats. The effects of swimming exercise and caffeine on oxidative stress in muscle and liver of middle-aged rats were also investigated. The two-way ANOVA of pro-inflammatory cytokine levels demonstrated a significant exercise x caffeine interaction for IL-1ß (F (1, 16) = 9.5772; p = 0.0069), IL-6 (F (1, 16) = 8.0463; p = 0.0119) and INF-γ (F (1, 16) = 15.078; p = 0.0013). The two-way ANOVA of TNF-α levels revealed a significant exercise × caffeine interaction (F (1, 16) = 9.6881; p = 0.00670). Swimming exercise and caffeine supplementation increased the ratio of reduced glutathione/oxidized glutathione in the rat liver and gastrocnemius muscle. Hepatic and renal markers of damage were not modified. In conclusion, a moderate-intensity swimming exercise protocol and caffeine supplementation induced positive adaptations in modulating cytokine levels without causing oxidative stress in muscle and liver of middle-aged rats.


Aging/drug effects , Caffeine/administration & dosage , Cytokines/metabolism , Exercise Therapy , Inflammation/therapy , Swimming , Aging/genetics , Aging/metabolism , Animals , Cytokines/genetics , Dietary Supplements/analysis , Humans , Inflammation/drug therapy , Inflammation/metabolism , Liver/drug effects , Liver/metabolism , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar
18.
Physiol Behav ; 124: 116-22, 2014 Jan 30.
Article En | MEDLINE | ID: mdl-24239994

Hypothyroidism has been associated to psychiatric disorder development and tissue oxidative damage. In this study, we evaluated the effect of diphenyl diselenide supplementation on depressive-like behavior triggered by methimazole exposure in female rats. Additionally, thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS) and non-protein thiol (NP-SH) levels were analyzed in cerebral cortex, hippocampus and striatum structures of rats. Monoamine oxidase (MAO) activity was evaluated in total brain. Firstly, female rats received methimazole (MTZ) 20mg/100ml in the drinking water for 30days and were evaluated in open-field and forced swimming tests (FST). In this set of experiments, the rats exposed to MTZ presented a depressive-like behavior, which was evidenced by a significant increase in the immobility time when compared to control group. Thereafter, MTZ-induced hypothyroid rats received either a standard or a diet containing 5ppm of diphenyl diselenide, and then they were evaluated monthly in open-field and FST tests during 3months. No alteration on the locomotor performance was observed among the groups. The depressive-like behavior of hypothyroid rats was blunted by diphenyl diselenide supplementation during all experimental periods. The levels of thyroid hormones remained low in MTZ exposed groups until the end of experimental period. The MTZ group had an increase in TBARS and ROS levels that were restored by diphenyl diselenide supplementation. NP-SH content of cerebral structures was not modified by MTZ exposure and/or diphenyl diselenide supplementation. Diphenyl diselenide supplementation restored the MAO B activity that was decreased in MTZ group. In summary, our results show that hypothyroidism induced by MTZ methimazole triggers a depressive-like behavior in female rats and that dietary diphenyl diselenide was able to reduce this effect.


Antidepressive Agents/therapeutic use , Benzene Derivatives/therapeutic use , Depression/diet therapy , Organoselenium Compounds/therapeutic use , Animals , Antidepressive Agents/pharmacology , Benzene Derivatives/pharmacology , Brain/metabolism , Depression/blood , Depression/complications , Female , Hypothyroidism/blood , Hypothyroidism/chemically induced , Hypothyroidism/complications , Hypothyroidism/diet therapy , Immobility Response, Tonic/drug effects , Lipid Peroxidation/drug effects , Methimazole , Monoamine Oxidase/metabolism , Motor Activity/drug effects , Organoselenium Compounds/pharmacology , Rats , Reactive Oxygen Species/metabolism , Sulfhydryl Compounds/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Thyroid Hormones/blood , Thyroid Hormones/deficiency
19.
J Neurotrauma ; 30(14): 1278-87, 2013 Jul 15.
Article En | MEDLINE | ID: mdl-23530735

Traumatic brain injury (TBI) is a major cause of acquired epilepsy, and significant resources are required to develop a better understanding of the pathologic mechanism as targets for potential therapies. Thus, we decided to investigate whether physical exercise after fluid percussion injury (FPI) protects from oxidative and neurochemical alterations as well as from behavioral electroencephalographic (EEG) seizures induced by subeffective convulsive doses of pentylenetetrazol (PTZ; 35 mg/kg). Behavioral and EEG recordings revealed that treadmill physical training increased latency to first clonic and tonic-clonic seizures, attenuated the duration of generalized seizures, and protected against the increase of PTZ-induced Racine scale 5 weeks after neuronal injury. EEG recordings also revealed that physical exercise prevented PTZ-induced amplitude increase in TBI animals. Neurochemical analysis showed that exercise training increased glutathione/oxidized glutathione ratio and glutathione levels per se. Exercise training was also effective against alterations in the redox status, herein characterized by lipid peroxidation (thiobarbituric acid reactive substances), protein carbonyl increase, as well as the inhibition of superoxide dismutase and Na⁺,K⁺-ATPase activities after FPI. On the other hand, histologic analysis with hematoxylin and eosin revealed that FPI induced moderate neuronal damage in cerebral cortex 4 weeks after injury and that physical exercise did not protect against neuronal injury. These data suggest that the ability of physical exercise to reduce FPI-induced seizures is not related to its protection against neuronal damage; however, the effective protection of selected targets, such as Na⁺/K⁺-ATPase elicited by physical exercise, may represent a new line of treatment for post-traumatic seizure susceptibility.


Brain Injuries/complications , Convulsants , Oxidative Stress/physiology , Pentylenetetrazole , Physical Conditioning, Animal/physiology , Seizures/chemically induced , Seizures/prevention & control , Animals , Brain/pathology , Brain Chemistry , Brain Injuries/pathology , Brain Injuries/physiopathology , Electrodes, Implanted , Electroencephalography , Epilepsies, Myoclonic/epidemiology , Epilepsies, Myoclonic/physiopathology , Epilepsy, Tonic-Clonic/etiology , Epilepsy, Tonic-Clonic/physiopathology , Glutathione/metabolism , Homeostasis/physiology , Male , Protein Carbonylation , Rats , Rats, Wistar , Reactive Oxygen Species , Seizures/etiology , Sodium-Potassium-Exchanging ATPase/metabolism , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
20.
PLoS One ; 8(2): e55668, 2013.
Article En | MEDLINE | ID: mdl-23405192

BACKGROUND AND AIMS: Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS) production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. METHODS: Wistar rats were divided into training (n = 14) and control (n = 14) groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7) and control (n = 7) rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. RESULTS: Trained group showed increased reduced glutathione (GSH) content and reduced/oxidized (GSH/GSSG) ratio, higher superoxide dismutase (MnSOD) activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. CONCLUSIONS: Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance.


Adaptation, Physiological , Mitochondria, Liver/physiology , Oxidative Stress , Physical Conditioning, Animal , Reactive Oxygen Species/metabolism , Swimming/physiology , Animals , Antioxidants/metabolism , Glutathione/metabolism , Male , Membrane Potential, Mitochondrial , Oxidation-Reduction , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
...